/*
* UFC-crypt: ultra fast crypt(3) implementation
*
* Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* @(#)crypt_util.c 2.43 5/18/93
*
* Support routines
*
*/
#ifdef DEBUG
#include <stdio.h>
#endif
#ifndef STATIC
#define STATIC static
#endif
#ifndef DOS
#include "patchlevel.h"
#include "ufc-crypt.h"
#else
/*
* Thanks to greg%wind@plains.NoDak.edu (Greg W. Wettstein)
* for DOS patches
*/
#include "pl.h"
#include "ufc.h"
#endif
#include <stdlib.h>
#include <string.h>
static char patchlevel_str[] = PATCHLEVEL;
/*
* Permutation done once on the 56 bit
* key derived from the original 8 byte ASCII key.
*/
static int pc1[56] = {
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
};
/*
* How much to rotate each 28 bit half of the pc1 permutated
* 56 bit key before using pc2 to give the i' key
*/
static int rots[16] = {
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};
/*
* Permutation giving the key
* of the i' DES round
*/
static int pc2[48] = {
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};
/*
* The E expansion table which selects
* bits from the 32 bit intermediate result.
*/
static int esel[48] = {
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
};
static int e_inverse[64];
/*
* Permutation done on the
* result of sbox lookups
*/
static int perm32[32] = {
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
};
/*
* The sboxes
*/
static int sbox[8][4][16] = {
{{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7},
{0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8},
{4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0},
{15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}
},
{{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10},
{3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5},
{0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15},
{13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}
},
{{10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8},
{13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1},
{13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7},
{1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}
},
{{7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15},
{13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9},
{10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4},
{3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}
},
{{2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9},
{14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6},
{4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14},
{11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}
},
{{12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11},
{10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8},
{9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6},
{4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}
},
{{4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1},
{13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6},
{1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2},
{6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}
},
{{13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7},
{1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2},
{7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8},
{2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}
}
};
/*
* This is the initial
* permutation matrix
*/
static int initial_perm[64] = {
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
};
/*
* This is the final
* permutation matrix
*/
static int final_perm[64] = {
40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
};
/*
* The 16 DES keys in BITMASK format
*/
#ifdef _UFC_32_
long32 _ufc_keytab[16][2];
#endif
#ifdef _UFC_64_
long64 _ufc_keytab[16];
#endif
#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
/* Macro to set a bit (0..23) */
#define BITMASK(i) ( (1L<<(11L-(i)%12L+3L)) << ((i)<12L?16L:0L) )
/*
* sb arrays:
*
* Workhorses of the inner loop of the DES implementation.
* They do sbox lookup, shifting of this value, 32 bit
* permutation and E permutation for the next round.
*
* Kept in 'BITMASK' format.
*/
#ifdef _UFC_32_
long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];
static long32 *sb[4] = { _ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3 };
#endif
#ifdef _UFC_64_
long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];
static long64 *sb[4] = { _ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3 };
#endif
/*
* eperm32tab: do 32 bit permutation and E selection
*
* The first index is the byte number in the 32 bit value to be permuted
* - second - is the value of this byte
* - third - selects the two 32 bit values
*
* The table is used and generated internally in init_des to speed it up
*/
static ufc_long eperm32tab[4][256][2];
/*
* do_pc1: permform pc1 permutation in the key schedule generation.
*
* The first index is the byte number in the 8 byte ASCII key
* - second - - the two 28 bits halfs of the result
* - third - selects the 7 bits actually used of each byte
*
* The result is kept with 28 bit per 32 bit with the 4 most significant
* bits zero.
*/
static ufc_long do_pc1[8][2][128];
/*
* do_pc2: permform pc2 permutation in the key schedule generation.
*
* The first index is the septet number in the two 28 bit intermediate values
* - second - - - septet values
*
* Knowledge of the structure of the pc2 permutation is used.
*
* The result is kept with 28 bit per 32 bit with the 4 most significant
* bits zero.
*/
static ufc_long do_pc2[8][128];
/*
* efp: undo an extra e selection and do final
* permutation giving the DES result.
*
* Invoked 6 bit a time on two 48 bit values
* giving two 32 bit longs.
*/
static ufc_long efp[16][64][2];
static unsigned char bytemask[8] = {
0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
};
static ufc_long longmask[32] = {
0x80000000, 0x40000000, 0x20000000, 0x10000000,
0x08000000, 0x04000000, 0x02000000, 0x01000000,
0x00800000, 0x00400000, 0x00200000, 0x00100000,
0x00080000, 0x00040000, 0x00020000, 0x00010000,
0x00008000, 0x00004000, 0x00002000, 0x00001000,
0x00000800, 0x00000400, 0x00000200, 0x00000100,
0x00000080, 0x00000040, 0x00000020, 0x00000010,
0x00000008, 0x00000004, 0x00000002, 0x00000001
};
#ifdef _UFC_32_
/*
* 32 bit version
*/
extern long32 _ufc_keytab[16][2];
extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
#define SBA(sb, v) (*(long32*)((char*)(sb)+(v)))
static ufc_long ary[4];
ufc_long *_ufc_doit( ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2,
ufc_long itr )
{
int i;
long32 s, *k;
register long32 *sb0 = _ufc_sb0;
register long32 *sb1 = _ufc_sb1;
register long32 *sb2 = _ufc_sb2;
register long32 *sb3 = _ufc_sb3;
while ( itr-- )
{
k = &_ufc_keytab[0][0];
for ( i = 8; i--; )
{
s = *k++ ^ r1;
l1 ^= SBA( sb1, s & 0xffff );
l2 ^= SBA( sb1, ( s & 0xffff ) + 4 );
l1 ^= SBA( sb0, s >>= 16 );
l2 ^= SBA( sb0, ( s ) + 4 );
s = *k++ ^ r2;
l1 ^= SBA( sb3, s & 0xffff );
l2 ^= SBA( sb3, ( s & 0xffff ) + 4 );
l1 ^= SBA( sb2, s >>= 16 );
l2 ^= SBA( sb2, ( s ) + 4 );
s = *k++ ^ l1;
r1 ^= SBA( sb1, s & 0xffff );
r2 ^= SBA( sb1, ( s & 0xffff ) + 4 );
r1 ^= SBA( sb0, s >>= 16 );
r2 ^= SBA( sb0, ( s ) + 4 );
s = *k++ ^ l2;
r1 ^= SBA( sb3, s & 0xffff );
r2 ^= SBA( sb3, ( s & 0xffff ) + 4 );
r1 ^= SBA( sb2, s >>= 16 );
r2 ^= SBA( sb2, ( s ) + 4 );
}
s = l1;
l1 = r1;
r1 = s;
s = l2;
l2 = r2;
r2 = s;
}
ary[0] = l1;
ary[1] = l2;
ary[2] = r1;
ary[3] = r2;
return ary;
}
#endif
#ifdef _UFC_64_
/*
* 64 bit version
*/
extern long64 _ufc_keytab[16];
extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
#define SBA(sb, v) (*(long64*)((char*)(sb)+(v)))
static ufc_long ary[4];
ufc_long *_ufc_doit( l1, l2, r1, r2, itr )
ufc_long l1, l2, r1, r2, itr;
{
int i;
long64 l, r, s, *k;
register long64 *sb0 = _ufc_sb0;
register long64 *sb1 = _ufc_sb1;
register long64 *sb2 = _ufc_sb2;
register long64 *sb3 = _ufc_sb3;
l = ( ( ( long64 ) l1 ) << 32 ) | ( ( long64 ) l2 );
r = ( ( ( long64 ) r1 ) << 32 ) | ( ( long64 ) r2 );
while ( itr-- )
{
k = &_ufc_keytab[0];
for ( i = 8; i--; )
{
s = *k++ ^ r;
l ^= SBA( sb3, ( s >> 0 ) & 0xffff );
l ^= SBA( sb2, ( s >> 16 ) & 0xffff );
l ^= SBA( sb1, ( s >> 32 ) & 0xffff );
l ^= SBA( sb0, ( s >> 48 ) & 0xffff );
s = *k++ ^ l;
r ^= SBA( sb3, ( s >> 0 ) & 0xffff );
r ^= SBA( sb2, ( s >> 16 ) & 0xffff );
r ^= SBA( sb1, ( s >> 32 ) & 0xffff );
r ^= SBA( sb0, ( s >> 48 ) & 0xffff );
}
s = l;
l = r;
r = s;
}
ary[0] = l >> 32;
ary[1] = l & 0xffffffff;
ary[2] = r >> 32;
ary[3] = r & 0xffffffff;
return ary;
}
#endif
#ifdef DEBUG
pr_bits( a, n )
ufc_long *a;
int n;
{
ufc_long i, j, t, tmp;
n /= 8;
for ( i = 0; i < n; i++ )
{
tmp = 0;
for ( j = 0; j < 8; j++ )
{
t = 8 * i + j;
tmp |= ( a[t / 24] & BITMASK( t % 24 ) ) ? bytemask[j] : 0;
}
( void ) printf( "%02x ", tmp );
}
printf( " " );
}
static set_bits( v, b )
ufc_long v;
ufc_long *b;
{
ufc_long i;
*b = 0;
for ( i = 0; i < 24; i++ )
{
if ( v & longmask[8 + i] )
*b |= BITMASK( i );
}
}
#endif
/*
* Silly rewrite of 'bzero'. I do so
* because some machines don't have
* bzero and some don't have memset.
*/
STATIC void clearmem( start, cnt )
char *start;
int cnt;
{
while ( cnt-- )
*start++ = '\0';
}
static int initialized = 0;
/* lookup a 6 bit value in sbox */
#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
/*
* Initialize unit - may be invoked directly
* by fcrypt users.
*/
void init_des( )
{
int comes_from_bit;
int bit, sg;
ufc_long j;
ufc_long mask1, mask2;
/*
* Create the do_pc1 table used
* to affect pc1 permutation
* when generating keys
*/
for ( bit = 0; bit < 56; bit++ )
{
comes_from_bit = pc1[bit] - 1;
mask1 = bytemask[comes_from_bit % 8 + 1];
mask2 = longmask[bit % 28 + 4];
for ( j = 0; j < 128; j++ )
{
if ( j & mask1 )
do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
}
}
/*
* Create the do_pc2 table used
* to affect pc2 permutation when
* generating keys
*/
for ( bit = 0; bit < 48; bit++ )
{
comes_from_bit = pc2[bit] - 1;
mask1 = bytemask[comes_from_bit % 7 + 1];
mask2 = BITMASK( bit % 24 );
for ( j = 0; j < 128; j++ )
{
if ( j & mask1 )
do_pc2[comes_from_bit / 7][j] |= mask2;
}
}
/*
* Now generate the table used to do combined
* 32 bit permutation and e expansion
*
* We use it because we have to permute 16384 32 bit
* longs into 48 bit in order to initialize sb.
*
* Looping 48 rounds per permutation becomes
* just too slow...
*
*/
clearmem( ( char * ) eperm32tab, sizeof( eperm32tab ) );
for ( bit = 0; bit < 48; bit++ )
{
ufc_long mask1, comes_from;
comes_from = perm32[esel[bit] - 1] - 1;
mask1 = bytemask[comes_from % 8];
for ( j = 256; j--; )
{
if ( j & mask1 )
eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK( bit % 24 );
}
}
/*
* Create the sb tables:
*
* For each 12 bit segment of an 48 bit intermediate
* result, the sb table precomputes the two 4 bit
* values of the sbox lookups done with the two 6
* bit halves, shifts them to their proper place,
* sends them through perm32 and finally E expands
* them so that they are ready for the next
* DES round.
*
*/
for ( sg = 0; sg < 4; sg++ )
{
int j1, j2;
int s1, s2;
for ( j1 = 0; j1 < 64; j1++ )
{
s1 = s_lookup( 2 * sg, j1 );
for ( j2 = 0; j2 < 64; j2++ )
{
ufc_long to_permute, inx;
s2 = s_lookup( 2 * sg + 1, j2 );
to_permute = ( ( ( ufc_long ) s1 << 4 ) |
( ufc_long ) s2 ) << ( 24 -
8 * ( ufc_long ) sg );
#ifdef _UFC_32_
inx = ( ( j1 << 6 ) | j2 ) << 1;
sb[sg][inx] = eperm32tab[0][( to_permute >> 24 ) & 0xff][0];
sb[sg][inx + 1] = eperm32tab[0][( to_permute >> 24 ) & 0xff][1];
sb[sg][inx] |= eperm32tab[1][( to_permute >> 16 ) & 0xff][0];
sb[sg][inx + 1] |=
eperm32tab[1][( to_permute >> 16 ) & 0xff][1];
sb[sg][inx] |= eperm32tab[2][( to_permute >> 8 ) & 0xff][0];
sb[sg][inx + 1] |= eperm32tab[2][( to_permute >> 8 ) & 0xff][1];
sb[sg][inx] |= eperm32tab[3][( to_permute ) & 0xff][0];
sb[sg][inx + 1] |= eperm32tab[3][( to_permute ) & 0xff][1];
#endif
#ifdef _UFC_64_
inx = ( ( j1 << 6 ) | j2 );
sb[sg][inx] =
( ( long64 ) eperm32tab[0][( to_permute >> 24 ) & 0xff][0]
<< 32 ) | ( long64 ) eperm32tab[0][( to_permute >> 24 ) &
0xff][1];
sb[sg][inx] |=
( ( long64 ) eperm32tab[1][( to_permute >> 16 ) & 0xff][0]
<< 32 ) | ( long64 ) eperm32tab[1][( to_permute >> 16 ) &
0xff][1];
sb[sg][inx] |=
( ( long64 ) eperm32tab[2][( to_permute >> 8 ) & 0xff][0] <<
32 ) | ( long64 ) eperm32tab[2][( to_permute >> 8 ) &
0xff][1];
sb[sg][inx] |=
( ( long64 ) eperm32tab[3][( to_permute ) & 0xff][0] << 32 )
| ( long64 ) eperm32tab[3][( to_permute ) & 0xff][1];
#endif
}
}
}
/*
* Create an inverse matrix for esel telling
* where to plug out bits if undoing it
*/
for ( bit = 48; bit--; )
{
e_inverse[esel[bit] - 1] = bit;
e_inverse[esel[bit] - 1 + 32] = bit + 48;
}
/*
* create efp: the matrix used to
* undo the E expansion and effect final permutation
*/
clearmem( ( char * ) efp, sizeof efp );
for ( bit = 0; bit < 64; bit++ )
{
int o_bit, o_long;
ufc_long word_value, mask1, mask2;
int comes_from_f_bit, comes_from_e_bit;
int comes_from_word, bit_within_word;
/* See where bit i belongs in the two 32 bit long's */
o_long = bit / 32; /* 0..1 */
o_bit = bit % 32; /* 0..31 */
/*
* And find a bit in the e permutated value setting this bit.
*
* Note: the e selection may have selected the same bit several
* times. By the initialization of e_inverse, we only look
* for one specific instance.
*/
comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
comes_from_word = comes_from_e_bit / 6; /* 0..15 */
bit_within_word = comes_from_e_bit % 6; /* 0..5 */
mask1 = longmask[bit_within_word + 26];
mask2 = longmask[o_bit];
for ( word_value = 64; word_value--; )
{
if ( word_value & mask1 )
efp[comes_from_word][word_value][o_long] |= mask2;
}
}
initialized++;
}
/*
* Process the elements of the sb table permuting the
* bits swapped in the expansion by the current salt.
*/
#ifdef _UFC_32_
STATIC void shuffle_sb( k, saltbits )
long32 *k;
ufc_long saltbits;
{
ufc_long j;
long32 x;
for ( j = 4096; j--; )
{
x = ( k[0] ^ k[1] ) & ( long32 ) saltbits;
*k++ ^= x;
*k++ ^= x;
}
}
#endif
#ifdef _UFC_64_
STATIC void shuffle_sb( k, saltbits )
long64 *k;
ufc_long saltbits;
{
ufc_long j;
long64 x;
for ( j = 4096; j--; )
{
x = ( ( *k >> 32 ) ^ *k ) & ( long64 ) saltbits;
*k++ ^= ( x << 32 ) | x;
}
}
#endif
/*
* Setup the unit for a new salt
* Hopefully we'll not see a new salt in each crypt call.
*/
static unsigned char current_salt[3] = "&&"; /* invalid value */
static ufc_long current_saltbits = 0;
static int direction = 0;
STATIC void setup_salt( s )
char *s;
{
ufc_long i, j, saltbits;
if ( !initialized )
init_des( );
if ( s[0] == current_salt[0] && s[1] == current_salt[1] )
return;
current_salt[0] = s[0];
current_salt[1] = s[1];
/*
* This is the only crypt change to DES:
* entries are swapped in the expansion table
* according to the bits set in the salt.
*/
saltbits = 0;
for ( i = 0; i < 2; i++ )
{
long c = ascii_to_bin( s[i] );
#ifdef notdef
/*
* Some applications do rely on illegal
* salts. It seems that UFC-crypt behaves
* identically to standard crypt
* implementations on illegal salts -- glad
*/
if ( c < 0 || c > 63 )
c = 0;
#endif
for ( j = 0; j < 6; j++ )
{
if ( ( c >> j ) & 0x1 )
saltbits |= BITMASK( 6 * i + j );
}
}
/*
* Permute the sb table values
* to reflect the changed e
* selection table
*/
shuffle_sb( _ufc_sb0, current_saltbits ^ saltbits );
shuffle_sb( _ufc_sb1, current_saltbits ^ saltbits );
shuffle_sb( _ufc_sb2, current_saltbits ^ saltbits );
shuffle_sb( _ufc_sb3, current_saltbits ^ saltbits );
current_saltbits = saltbits;
}
STATIC void ufc_mk_keytab( key )
char *key;
{
ufc_long v1, v2, *k1;
int i;
#ifdef _UFC_32_
long32 v, *k2 = &_ufc_keytab[0][0];
#endif
#ifdef _UFC_64_
long64 v, *k2 = &_ufc_keytab[0];
#endif
v1 = v2 = 0;
k1 = &do_pc1[0][0][0];
for ( i = 8; i--; )
{
v1 |= k1[*key & 0x7f];
k1 += 128;
v2 |= k1[*key++ & 0x7f];
k1 += 128;
}
for ( i = 0; i < 16; i++ )
{
k1 = &do_pc2[0][0];
v1 = ( v1 << rots[i] ) | ( v1 >> ( 28 - rots[i] ) );
v = k1[( v1 >> 21 ) & 0x7f];
k1 += 128;
v |= k1[( v1 >> 14 ) & 0x7f];
k1 += 128;
v |= k1[( v1 >> 7 ) & 0x7f];
k1 += 128;
v |= k1[( v1 ) & 0x7f];
k1 += 128;
#ifdef _UFC_32_
*k2++ = v;
v = 0;
#endif
#ifdef _UFC_64_
v <<= 32;
#endif
v2 = ( v2 << rots[i] ) | ( v2 >> ( 28 - rots[i] ) );
v |= k1[( v2 >> 21 ) & 0x7f];
k1 += 128;
v |= k1[( v2 >> 14 ) & 0x7f];
k1 += 128;
v |= k1[( v2 >> 7 ) & 0x7f];
k1 += 128;
v |= k1[( v2 ) & 0x7f];
*k2++ = v;
}
direction = 0;
}
/*
* Undo an extra E selection and do final permutations
*/
ufc_long *_ufc_dofinalperm( l1, l2, r1, r2 )
ufc_long l1, l2, r1, r2;
{
ufc_long v1, v2, x;
static ufc_long ary[2];
x = ( l1 ^ l2 ) & current_saltbits;
l1 ^= x;
l2 ^= x;
x = ( r1 ^ r2 ) & current_saltbits;
r1 ^= x;
r2 ^= x;
v1 = v2 = 0;
l1 >>= 3;
l2 >>= 3;
r1 >>= 3;
r2 >>= 3;
v1 |= efp[15][r2 & 0x3f][0];
v2 |= efp[15][r2 & 0x3f][1];
v1 |= efp[14][( r2 >>= 6 ) & 0x3f][0];
v2 |= efp[14][r2 & 0x3f][1];
v1 |= efp[13][( r2 >>= 10 ) & 0x3f][0];
v2 |= efp[13][r2 & 0x3f][1];
v1 |= efp[12][( r2 >>= 6 ) & 0x3f][0];
v2 |= efp[12][r2 & 0x3f][1];
v1 |= efp[11][r1 & 0x3f][0];
v2 |= efp[11][r1 & 0x3f][1];
v1 |= efp[10][( r1 >>= 6 ) & 0x3f][0];
v2 |= efp[10][r1 & 0x3f][1];
v1 |= efp[9][( r1 >>= 10 ) & 0x3f][0];
v2 |= efp[9][r1 & 0x3f][1];
v1 |= efp[8][( r1 >>= 6 ) & 0x3f][0];
v2 |= efp[8][r1 & 0x3f][1];
v1 |= efp[7][l2 & 0x3f][0];
v2 |= efp[7][l2 & 0x3f][1];
v1 |= efp[6][( l2 >>= 6 ) & 0x3f][0];
v2 |= efp[6][l2 & 0x3f][1];
v1 |= efp[5][( l2 >>= 10 ) & 0x3f][0];
v2 |= efp[5][l2 & 0x3f][1];
v1 |= efp[4][( l2 >>= 6 ) & 0x3f][0];
v2 |= efp[4][l2 & 0x3f][1];
v1 |= efp[3][l1 & 0x3f][0];
v2 |= efp[3][l1 & 0x3f][1];
v1 |= efp[2][( l1 >>= 6 ) & 0x3f][0];
v2 |= efp[2][l1 & 0x3f][1];
v1 |= efp[1][( l1 >>= 10 ) & 0x3f][0];
v2 |= efp[1][l1 & 0x3f][1];
v1 |= efp[0][( l1 >>= 6 ) & 0x3f][0];
v2 |= efp[0][l1 & 0x3f][1];
ary[0] = v1;
ary[1] = v2;
return ary;
}
/*
* crypt only: convert from 64 bit to 11 bit ASCII
* prefixing with the salt
*/
STATIC char *output_conversion( v1, v2, salt )
ufc_long v1, v2;
char *salt;
{
static char outbuf[14];
int i, s, shf;
outbuf[0] = salt[0];
outbuf[1] = salt[1] ? salt[1] : salt[0];
for ( i = 0; i < 5; i++ )
{
shf = ( 26 - 6 * i ); /* to cope with MSC compiler bug */
outbuf[i + 2] = ( char ) bin_to_ascii( ( v1 >> shf ) & 0x3f );
}
s = ( v2 & 0xf ) << 2;
v2 = ( v2 >> 2 ) | ( ( v1 & 0x3 ) << 30 );
for ( i = 5; i < 10; i++ )
{
shf = ( 56 - 6 * i );
outbuf[i + 2] = ( char ) bin_to_ascii( ( v2 >> shf ) & 0x3f );
}
outbuf[12] = bin_to_ascii( s );
outbuf[13] = 0;
return outbuf;
}
/*
* UNIX crypt function
*/
char *crypt( key, salt )
char *key, *salt;
{
ufc_long *s;
char ktab[9];
/*
* Hack DES tables according to salt
*/
setup_salt( salt );
/*
* Setup key schedule
*/
clearmem( ktab, sizeof ktab );
( void ) strncpy( ktab, key, 8 );
ufc_mk_keytab( ktab );
/*
* Go for the 25 DES encryptions
*/
s = _ufc_doit( ( ufc_long ) 0, ( ufc_long ) 0,
( ufc_long ) 0, ( ufc_long ) 0, ( ufc_long ) 25 );
/*
* Do final permutations
*/
s = _ufc_dofinalperm( s[0], s[1], s[2], s[3] );
/*
* And convert back to 6 bit ASCII
*/
return output_conversion( s[0], s[1], salt );
}
/*
* To make fcrypt users happy.
* They don't need to call init_des.
*/
char *fcrypt( key, salt )
char *key;
char *salt;
{
return crypt( key, salt );
}
/*
* UNIX encrypt function. Takes a bitvector
* represented by one byte per bit and
* encrypt/decrypt according to edflag
*/
void encrypt( block, edflag )
char *block;
int edflag;
{
ufc_long l1, l2, r1, r2, *s;
int i;
/*
* Undo any salt changes to E expansion
*/
setup_salt( ".." );
/*
* Reverse key table if
* changing operation (encrypt/decrypt)
*/
if ( ( edflag == 0 ) != ( direction == 0 ) )
{
for ( i = 0; i < 8; i++ )
{
#ifdef _UFC_32_
long32 x;
x = _ufc_keytab[15 - i][0];
_ufc_keytab[15 - i][0] = _ufc_keytab[i][0];
_ufc_keytab[i][0] = x;
x = _ufc_keytab[15 - i][1];
_ufc_keytab[15 - i][1] = _ufc_keytab[i][1];
_ufc_keytab[i][1] = x;
#endif
#ifdef _UFC_64_
long64 x;
x = _ufc_keytab[15 - i];
_ufc_keytab[15 - i] = _ufc_keytab[i];
_ufc_keytab[i] = x;
#endif
}
direction = edflag;
}
/*
* Do initial permutation + E expansion
*/
i = 0;
for ( l1 = 0; i < 24; i++ )
{
if ( block[initial_perm[esel[i] - 1] - 1] )
l1 |= BITMASK( i );
}
for ( l2 = 0; i < 48; i++ )
{
if ( block[initial_perm[esel[i] - 1] - 1] )
l2 |= BITMASK( i - 24 );
}
i = 0;
for ( r1 = 0; i < 24; i++ )
{
if ( block[initial_perm[esel[i] - 1 + 32] - 1] )
r1 |= BITMASK( i );
}
for ( r2 = 0; i < 48; i++ )
{
if ( block[initial_perm[esel[i] - 1 + 32] - 1] )
r2 |= BITMASK( i - 24 );
}
/*
* Do DES inner loops + final conversion
*/
s = _ufc_doit( l1, l2, r1, r2, ( ufc_long ) 1 );
/*
* Do final permutations
*/
s = _ufc_dofinalperm( s[0], s[1], s[2], s[3] );
/*
* And convert to bit array
*/
l1 = s[0];
r1 = s[1];
for ( i = 0; i < 32; i++ )
{
*block++ = ( l1 & longmask[i] ) != 0;
}
for ( i = 0; i < 32; i++ )
{
*block++ = ( r1 & longmask[i] ) != 0;
}
}
/*
* UNIX setkey function. Take a 64 bit DES
* key and setup the machinery.
*/
void setkey( key )
char *key;
{
int i, j;
unsigned char c;
unsigned char ktab[8];
setup_salt( ".." ); /* be sure we're initialized */
for ( i = 0; i < 8; i++ )
{
for ( j = 0, c = 0; j < 8; j++ )
c = c << 1 | *key++;
ktab[i] = c >> 1;
}
ufc_mk_keytab( ktab );
}
/*
* Ultrix crypt16 function, thanks to pcl@convex.oxford.ac.uk (Paul Leyland)
*/
char *crypt16( key, salt )
char *key, *salt;
{
ufc_long *s, *t;
char ktab[9], ttab[9];
static char q[14], res[25];
/*
* Hack DES tables according to salt
*/
setup_salt( salt );
/*
* Setup key schedule
*/
clearmem( ktab, sizeof ktab );
( void ) strncpy( ktab, key, 8 );
ufc_mk_keytab( ktab );
/*
* Go for first 20 DES encryptions
*/
s = _ufc_doit( ( ufc_long ) 0, ( ufc_long ) 0,
( ufc_long ) 0, ( ufc_long ) 0, ( ufc_long ) 20 );
s = _ufc_dofinalperm( s[0], s[1], s[2], s[3] );
/*
* And convert back to 6 bit ASCII
*/
strcpy( res, output_conversion( s[0], s[1], salt ) );
clearmem( ttab, sizeof ttab );
if ( strlen( key ) > 8 )
( void ) strncpy( ttab, key + 8, 8 );
ufc_mk_keytab( ttab );
/*
* Go for second 5 DES encryptions
*/
t = _ufc_doit( ( ufc_long ) 0, ( ufc_long ) 0,
( ufc_long ) 0, ( ufc_long ) 0, ( ufc_long ) 5 );
t = _ufc_dofinalperm( t[0], t[1], t[2], t[3] );
/*
* And convert back to 6 bit ASCII
*/
strcpy( q, output_conversion( t[0], t[1], salt ) );
strcpy( res + 13, q + 2 );
return res;
}