/* bind.c -- key binding and startup file support for the readline library. */

/* Copyright (C) 1987, 1989, 1992 Free Software Foundation, Inc.

   This file is part of the GNU Readline Library, a library for
   reading lines of text with interactive input and history editing.

   The GNU Readline Library is free software; you can redistribute it
   and/or modify it under the terms of the GNU General Public License
   as published by the Free Software Foundation; either version 1, or
   (at your option) any later version.

   The GNU Readline Library is distributed in the hope that it will be
   useful, but WITHOUT ANY WARRANTY; without even the implied warranty
   of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   The GNU General Public License is often shipped with GNU software, and
   is generally kept in a file called COPYING or LICENSE.  If you do not
   have a copy of the license, write to the Free Software Foundation,
   675 Mass Ave, Cambridge, MA 02139, USA. */
#define READLINE_LIBRARY

#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>
#if !defined (NO_SYS_FILE)
#include <sys/file.h>
#endif /* !NO_SYS_FILE */
#include <signal.h>

#if defined (HAVE_UNISTD_H)
#include <unistd.h>
#endif /* HAVE_UNISTD_H */

#if defined (HAVE_STDLIB_H)
#include <stdlib.h>
#else
#include "ansi_stdlib.h"
#endif /* HAVE_STDLIB_H */

#include <errno.h>
/* Not all systems declare ERRNO in errno.h... and some systems #define it! */
#if !defined (errno)
extern int errno;
#endif /* !errno */

#include "posixstat.h"

/* System-specific feature definitions and include files. */
#include "rldefs.h"

/* Some standard library routines. */
#include "readline.h"
#include "history.h"

#if !defined (strchr) && !defined (__STDC__)
extern char *strchr(), *strrchr();
#endif /* !strchr && !__STDC__ */

extern int _rl_horizontal_scroll_mode;
extern int _rl_mark_modified_lines;
extern int _rl_bell_preference;
extern int _rl_meta_flag;
extern int _rl_convert_meta_chars_to_ascii;
extern int _rl_output_meta_chars;
extern int _rl_complete_show_all;
#if defined (PAREN_MATCHING)
extern int rl_blink_matching_paren;
#endif /* PAREN_MATCHING */
#if defined (VISIBLE_STATS)
extern int rl_visible_stats;
#endif /* VISIBLE_STATS */
extern int rl_complete_with_tilde_expansion;
extern int rl_completion_query_items;
#if defined (VI_MODE)
extern char *rl_vi_comment_begin;
#endif

extern int rl_explicit_arg;
extern int rl_editing_mode;
extern unsigned short _rl_parsing_conditionalized_out;
extern Keymap _rl_keymap;

extern char *possible_control_prefixes[], *possible_meta_prefixes[];

extern char **rl_funmap_names();

/* Forward declarations */
void rl_set_keymap_from_edit_mode();

static int glean_key_from_name();

#if defined (HAVE_STRCASECMP)
#define stricmp strcasecmp
#define strnicmp strncasecmp
#else
static int stricmp(), strnicmp();
#endif

#if defined (STATIC_MALLOC)
static char *xmalloc(), *xrealloc();
#else
extern char *xmalloc(), *xrealloc();
#endif /* STATIC_MALLOC */

/* **************************************************************** */
/*                                                                  */
/*                      Binding keys                                */
/*                                                                  */
/* **************************************************************** */

/* rl_add_defun (char *name, Function *function, int key)
   Add NAME to the list of named functions.  Make FUNCTION be the function
   that gets called.  If KEY is not -1, then bind it. */
rl_add_defun(name, function, key)
     char *name;
     Function *function;
     int key;
{
	if (key != -1)
		rl_bind_key(key, function);
	rl_add_funmap_entry(name, function);
	return 0;
}

/* Bind KEY to FUNCTION.  Returns non-zero if KEY is out of range. */
int rl_bind_key(key, function)
     int key;
     Function *function;
{
	if (key < 0)
		return (key);

	if (META_CHAR(key) && _rl_convert_meta_chars_to_ascii) {
		if (_rl_keymap[ESC].type == ISKMAP) {
			Keymap escmap;

			escmap = FUNCTION_TO_KEYMAP(_rl_keymap, ESC);
			key = UNMETA(key);
			escmap[key].type = ISFUNC;
			escmap[key].function = function;
			return (0);
		}
		return (key);
	}

	_rl_keymap[key].type = ISFUNC;
	_rl_keymap[key].function = function;
	return (0);
}

/* Bind KEY to FUNCTION in MAP.  Returns non-zero in case of invalid
   KEY. */
int rl_bind_key_in_map(key, function, map)
     int key;
     Function *function;
     Keymap map;
{
	int result;
	Keymap oldmap = _rl_keymap;

	_rl_keymap = map;
	result = rl_bind_key(key, function);
	_rl_keymap = oldmap;
	return (result);
}

/* Make KEY do nothing in the currently selected keymap.
   Returns non-zero in case of error. */
int rl_unbind_key(key)
     int key;
{
	return (rl_bind_key(key, (Function *) NULL));
}

/* Make KEY do nothing in MAP.
   Returns non-zero in case of error. */
int rl_unbind_key_in_map(key, map)
     int key;
     Keymap map;
{
	return (rl_bind_key_in_map(key, (Function *) NULL, map));
}

/* Bind the key sequence represented by the string KEYSEQ to
   FUNCTION.  This makes new keymaps as necessary.  The initial
   place to do bindings is in MAP. */
rl_set_key(keyseq, function, map)
     char *keyseq;
     Function *function;
     Keymap map;
{
	return (rl_generic_bind(ISFUNC, keyseq, function, map));
}

/* Bind the key sequence represented by the string KEYSEQ to
   the string of characters MACRO.  This makes new keymaps as
   necessary.  The initial place to do bindings is in MAP. */
rl_macro_bind(keyseq, macro, map)
     char *keyseq, *macro;
     Keymap map;
{
	char *macro_keys;
	int macro_keys_len;

	macro_keys = (char *) xmalloc((2 * strlen(macro)) + 1);

	if (rl_translate_keyseq(macro, macro_keys, &macro_keys_len)) {
		free(macro_keys);
		return -1;
	}
	rl_generic_bind(ISMACR, keyseq, macro_keys, map);
	return 0;
}

/* Bind the key sequence represented by the string KEYSEQ to
   the arbitrary pointer DATA.  TYPE says what kind of data is
   pointed to by DATA, right now this can be a function (ISFUNC),
   a macro (ISMACR), or a keymap (ISKMAP).  This makes new keymaps
   as necessary.  The initial place to do bindings is in MAP. */
rl_generic_bind(type, keyseq, data, map)
     int type;
     char *keyseq, *data;
     Keymap map;
{
	char *keys;
	int keys_len;
	register int i;

	/* If no keys to bind to, exit right away. */
	if (!keyseq || !*keyseq) {
		if (type == ISMACR)
			free(data);
		return -1;
	}

	keys = xmalloc(1 + (2 * strlen(keyseq)));

	/* Translate the ASCII representation of KEYSEQ into an array of
	   characters.  Stuff the characters into KEYS, and the length of
	   KEYS into KEYS_LEN. */
	if (rl_translate_keyseq(keyseq, keys, &keys_len)) {
		free(keys);
		return -1;
	}

	/* Bind keys, making new keymaps as necessary. */
	for (i = 0; i < keys_len; i++) {
		int ic = (int) ((unsigned char) keys[i]);

		if (_rl_convert_meta_chars_to_ascii && META_CHAR(ic)) {
			ic = UNMETA(ic);
			if (map[ESC].type == ISKMAP)
				map = FUNCTION_TO_KEYMAP(map, ESC);
		}

		if ((i + 1) < keys_len) {
			if (map[ic].type != ISKMAP) {
				if (map[ic].type == ISMACR)
					free((char *) map[ic].function);

				map[ic].type = ISKMAP;
				map[ic].function = KEYMAP_TO_FUNCTION(rl_make_bare_keymap());
			}
			map = FUNCTION_TO_KEYMAP(map, ic);
		}
		else {
			if (map[ic].type == ISMACR)
				free((char *) map[ic].function);

			map[ic].function = KEYMAP_TO_FUNCTION(data);
			map[ic].type = type;
		}
	}
	free(keys);
	return 0;
}

/* Translate the ASCII representation of SEQ, stuffing the values into ARRAY,
   an array of characters.  LEN gets the final length of ARRAY.  Return
   non-zero if there was an error parsing SEQ. */
rl_translate_keyseq(seq, array, len)
     char *seq, *array;
     int *len;
{
	register int i, c, l = 0;

	for (i = 0; c = seq[i]; i++) {
		if (c == '\\') {
			c = seq[++i];

			if (!c)
				break;

			if (((c == 'C' || c == 'M') && seq[i + 1] == '-') ||
			    (c == 'e')) {
				/* Handle special case of backwards define. */
				if (strncmp(&seq[i], "C-\\M-", 5) == 0) {
					array[l++] = ESC;
					i += 5;
					array[l++] = CTRL(to_upper(seq[i]));
					if (!seq[i])
						i--;
					continue;
				}

				switch (c) {
				case 'M':
					i++;
					array[l++] = ESC;
					break;

				case 'C':
					i += 2;
					/* Special hack for C-?... */
					if (seq[i] == '?')
						array[l++] = RUBOUT;
					else
						array[l++] = CTRL(to_upper(seq[i]));
					break;

				case 'e':
					array[l++] = ESC;
				}

				continue;
			}
		}
		array[l++] = c;
	}

	*len = l;
	array[l] = '\0';
	return (0);
}

/* Return a pointer to the function that STRING represents.
   If STRING doesn't have a matching function, then a NULL pointer
   is returned. */
Function *
  rl_named_function(string)
     char *string;
{
	register int i;

	rl_initialize_funmap();

	for (i = 0; funmap[i]; i++)
		if (stricmp(funmap[i]->name, string) == 0)
			return (funmap[i]->function);
	return ((Function *) NULL);
}

/* Return the function (or macro) definition which would be invoked via
   KEYSEQ if executed in MAP.  If MAP is NULL, then the current keymap is
   used.  TYPE, if non-NULL, is a pointer to an int which will receive the
   type of the object pointed to.  One of ISFUNC (function), ISKMAP (keymap),
   or ISMACR (macro). */
Function *
  rl_function_of_keyseq(keyseq, map, type)
     char *keyseq;
     Keymap map;
     int *type;
{
	register int i;

	if (!map)
		map = _rl_keymap;

	for (i = 0; keyseq && keyseq[i]; i++) {
		int ic = keyseq[i];

		if (META_CHAR(ic) && _rl_convert_meta_chars_to_ascii) {
			if (map[ESC].type != ISKMAP) {
				if (type)
					*type = map[ESC].type;

				return (map[ESC].function);
			}
			else {
				map = FUNCTION_TO_KEYMAP(map, ESC);
				ic = UNMETA(ic);
			}
		}

		if (map[ic].type == ISKMAP) {
			/* If this is the last key in the key sequence, return the
			   map. */
			if (!keyseq[i + 1]) {
				if (type)
					*type = ISKMAP;

				return (map[ic].function);
			}
			else
				map = FUNCTION_TO_KEYMAP(map, ic);
		}
		else {
			if (type)
				*type = map[ic].type;

			return (map[ic].function);
		}
	}
	return ((Function *) NULL);
}

/* The last key bindings file read. */
static char *last_readline_init_file = (char *) NULL;

/* Re-read the current keybindings file. */
rl_re_read_init_file(count, ignore)
     int count, ignore;
{
	int r;
	r = rl_read_init_file((char *) NULL);
	rl_set_keymap_from_edit_mode();
	return r;
}

/* Do key bindings from a file.  If FILENAME is NULL it defaults
   to the first non-null filename from this list:
   1. the filename used for the previous call
   2. the value of the shell variable `INPUTRC'
   3. ~/.inputrc
   If the file existed and could be opened and read, 0 is returned,
   otherwise errno is returned. */
int rl_read_init_file(filename)
     char *filename;
{
	register int i;
	char *buffer, *openname, *line, *end;
	struct stat finfo;
	int file;

	/* Default the filename. */
	if (!filename) {
		filename = last_readline_init_file;
		if (!filename)
			filename = getenv("INPUTRC");
		if (!filename)
			filename = DEFAULT_INPUTRC;
	}

	if (!*filename)
		filename = DEFAULT_INPUTRC;

	openname = tilde_expand(filename);

	if ((stat(openname, &finfo) < 0) ||
	    (file = open(openname, O_RDONLY, 0666)) < 0) {
		free(openname);
		return (errno);
	}
	else
		free(openname);

	if (filename != last_readline_init_file) {
		if (last_readline_init_file)
			free(last_readline_init_file);

		last_readline_init_file = savestring(filename);
	}

	/* Read the file into BUFFER. */
	buffer = (char *) xmalloc((int) finfo.st_size + 1);
	i = read(file, buffer, finfo.st_size);
	close(file);

	if (i != finfo.st_size)
		return (errno);

	/* Loop over the lines in the file.  Lines that start with `#' are
	   comments; all other lines are commands for readline initialization. */
	line = buffer;
	end = buffer + finfo.st_size;
	while (line < end) {
		/* Find the end of this line. */
		for (i = 0; line + i != end && line[i] != '\n'; i++);

		/* Mark end of line. */
		line[i] = '\0';

		/* Skip leading whitespace. */
		while (*line && whitespace(*line)) {
			line++;
			i--;
		}

		/* If the line is not a comment, then parse it. */
		if (*line && *line != '#')
			rl_parse_and_bind(line);

		/* Move to the next line. */
		line += i + 1;
	}
	free(buffer);
	return (0);
}

/* **************************************************************** */
/*                                                                  */
/*                      Parser Directives                           */
/*                                                                  */
/* **************************************************************** */

/* Conditionals. */

/* Calling programs set this to have their argv[0]. */
char *rl_readline_name = "other";

/* Stack of previous values of parsing_conditionalized_out. */
static unsigned char *if_stack = (unsigned char *) NULL;
static int if_stack_depth = 0;
static int if_stack_size = 0;

/* Push _rl_parsing_conditionalized_out, and set parser state based
   on ARGS. */
static int parser_if(args)
     char *args;
{
	register int i;

	/* Push parser state. */
	if (if_stack_depth + 1 >= if_stack_size) {
		if (!if_stack)
			if_stack = (unsigned char *) xmalloc(if_stack_size = 20);
		else
			if_stack = (unsigned char *) xrealloc(if_stack, if_stack_size += 20);
	}
	if_stack[if_stack_depth++] = _rl_parsing_conditionalized_out;

	/* If parsing is turned off, then nothing can turn it back on except
	   for finding the matching endif.  In that case, return right now. */
	if (_rl_parsing_conditionalized_out)
		return 0;

	/* Isolate first argument. */
	for (i = 0; args[i] && !whitespace(args[i]); i++);

	if (args[i])
		args[i++] = '\0';

	/* Handle "if term=foo" and "if mode=emacs" constructs.  If this
	   isn't term=foo, or mode=emacs, then check to see if the first
	   word in ARGS is the same as the value stored in rl_readline_name. */
	if (rl_terminal_name && strnicmp(args, "term=", 5) == 0) {
		char *tem, *tname;

		/* Terminals like "aaa-60" are equivalent to "aaa". */
		tname = savestring(rl_terminal_name);
		tem = strchr(tname, '-');
		if (tem)
			*tem = '\0';

		/* Test the `long' and `short' forms of the terminal name so that
		   if someone has a `sun-cmd' and does not want to have bindings
		   that will be executed if the terminal is a `sun', they can put
		   `$if term=sun-cmd' into their .inputrc. */
		if ((stricmp(args + 5, tname) == 0) ||
		    (stricmp(args + 5, rl_terminal_name) == 0))
			_rl_parsing_conditionalized_out = 0;
		else
			_rl_parsing_conditionalized_out = 1;

		free(tname);
	}
#if defined (VI_MODE)
	else if (strnicmp(args, "mode=", 5) == 0) {
		int mode;

		if (stricmp(args + 5, "emacs") == 0)
			mode = emacs_mode;
		else if (stricmp(args + 5, "vi") == 0)
			mode = vi_mode;
		else
			mode = no_mode;

		if (mode == rl_editing_mode)
			_rl_parsing_conditionalized_out = 0;
		else
			_rl_parsing_conditionalized_out = 1;
	}
#endif /* VI_MODE */
	/* Check to see if the first word in ARGS is the same as the
	   value stored in rl_readline_name. */
	else if (stricmp(args, rl_readline_name) == 0)
		_rl_parsing_conditionalized_out = 0;
	else
		_rl_parsing_conditionalized_out = 1;
	return 0;
}

/* Invert the current parser state if there is anything on the stack. */
static int parser_else(args)
     char *args;
{
	register int i;

	if (!if_stack_depth) {
		/* Error message? */
		return 0;
	}

	/* Check the previous (n - 1) levels of the stack to make sure that
	   we haven't previously turned off parsing. */
	for (i = 0; i < if_stack_depth - 1; i++)
		if (if_stack[i] == 1)
			return 0;

	/* Invert the state of parsing if at top level. */
	_rl_parsing_conditionalized_out = !_rl_parsing_conditionalized_out;
	return 0;
}

/* Terminate a conditional, popping the value of
   _rl_parsing_conditionalized_out from the stack. */
static int parser_endif(args)
     char *args;
{
	if (if_stack_depth)
		_rl_parsing_conditionalized_out = if_stack[--if_stack_depth];
	else {
		/* *** What, no error message? *** */
	}
	return 0;
}

/* Associate textual names with actual functions. */
static struct {
	char *name;
	Function *function;
} parser_directives[] = {

	{
		"if", parser_if
	},
	{
		"endif", parser_endif
	},
	{
		"else", parser_else
	},
	{
		(char *) 0x0, (Function *) 0x0
	}
};

/* Handle a parser directive.  STATEMENT is the line of the directive
   without any leading `$'. */
static int handle_parser_directive(statement)
     char *statement;
{
	register int i;
	char *directive, *args;

	/* Isolate the actual directive. */

	/* Skip whitespace. */
	for (i = 0; whitespace(statement[i]); i++);

	directive = &statement[i];

	for (; statement[i] && !whitespace(statement[i]); i++);

	if (statement[i])
		statement[i++] = '\0';

	for (; statement[i] && whitespace(statement[i]); i++);

	args = &statement[i];

	/* Lookup the command, and act on it. */
	for (i = 0; parser_directives[i].name; i++)
		if (stricmp(directive, parser_directives[i].name) == 0) {
			(*parser_directives[i].function) (args);
			return (0);
		}

	/* *** Should an error message be output? */
	return (1);
}

static int substring_member_of_array();

/* Read the binding command from STRING and perform it.
   A key binding command looks like: Keyname: function-name\0,
   a variable binding command looks like: set variable value.
   A new-style keybinding looks like "\C-x\C-x": exchange-point-and-mark. */
rl_parse_and_bind(string)
     char *string;
{
	char *funname, *kname;
	register int c, i;
	int key, equivalency;

	while (string && whitespace(*string))
		string++;

	if (!string || !*string || *string == '#')
		return 0;

	/* If this is a parser directive, act on it. */
	if (*string == '$') {
		handle_parser_directive(&string[1]);
		return 0;
	}

	/* If we aren't supposed to be parsing right now, then we're done. */
	if (_rl_parsing_conditionalized_out)
		return 0;

	i = 0;
	/* If this keyname is a complex key expression surrounded by quotes,
	   advance to after the matching close quote.  This code allows the
	   backslash to quote characters in the key expression. */
	if (*string == '"') {
		int passc = 0;

		for (i = 1; c = string[i]; i++) {
			if (passc) {
				passc = 0;
				continue;
			}

			if (c == '\\') {
				passc++;
				continue;
			}

			if (c == '"')
				break;
		}
	}

	/* Advance to the colon (:) or whitespace which separates the two objects. */
	for (; (c = string[i]) && c != ':' && c != ' ' && c != '\t'; i++);

	equivalency = (c == ':' && string[i + 1] == '=');

	/* Mark the end of the command (or keyname). */
	if (string[i])
		string[i++] = '\0';

	/* If doing assignment, skip the '=' sign as well. */
	if (equivalency)
		string[i++] = '\0';

	/* If this is a command to set a variable, then do that. */
	if (stricmp(string, "set") == 0) {
		char *var = string + i;
		char *value;

		/* Make VAR point to start of variable name. */
		while (*var && whitespace(*var))
			var++;

		/* Make value point to start of value string. */
		value = var;
		while (*value && !whitespace(*value))
			value++;
		if (*value)
			*value++ = '\0';
		while (*value && whitespace(*value))
			value++;

		rl_variable_bind(var, value);
		return 0;
	}

	/* Skip any whitespace between keyname and funname. */
	for (; string[i] && whitespace(string[i]); i++);
	funname = &string[i];

	/* Now isolate funname.
	   For straight function names just look for whitespace, since
	   that will signify the end of the string.  But this could be a
	   macro definition.  In that case, the string is quoted, so skip
	   to the matching delimiter.  We allow the backslash to quote the
	   delimiter characters in the macro body. */
	/* This code exists to allow whitespace in macro expansions, which
	   would otherwise be gobbled up by the next `for' loop. */
	/* XXX - it may be desirable to allow backslash quoting only if " is
	   the quoted string delimiter, like the shell. */
	if (*funname == '\'' || *funname == '"') {
		int delimiter = string[i++];
		int passc = 0;

		for (; c = string[i]; i++) {
			if (passc) {
				passc = 0;
				continue;
			}

			if (c == '\\') {
				passc = 1;
				continue;
			}

			if (c == delimiter)
				break;
		}
		if (c)
			i++;
	}

	/* Advance to the end of the string.  */
	for (; string[i] && !whitespace(string[i]); i++);

	/* No extra whitespace at the end of the string. */
	string[i] = '\0';

	/* Handle equivalency bindings here.  Make the left-hand side be exactly
	   whatever the right-hand evaluates to, including keymaps. */
	if (equivalency) {
		return 0;
	}

	/* If this is a new-style key-binding, then do the binding with
	   rl_set_key ().  Otherwise, let the older code deal with it. */
	if (*string == '"') {
		char *seq = xmalloc(1 + strlen(string));
		register int j, k = 0;
		int passc = 0;

		for (j = 1; string[j]; j++) {
			/* Allow backslash to quote characters, but leave them in place.
			   This allows a string to end with a backslash quoting another
			   backslash, or with a backslash quoting a double quote.  The
			   backslashes are left in place for rl_translate_keyseq (). */
			if (passc || (string[j] == '\\')) {
				seq[k++] = string[j];
				passc = !passc;
				continue;
			}

			if (string[j] == '"')
				break;

			seq[k++] = string[j];
		}
		seq[k] = '\0';

		/* Binding macro? */
		if (*funname == '\'' || *funname == '"') {
			j = strlen(funname);

			/* Remove the delimiting quotes from each end of FUNNAME. */
			if (j && funname[j - 1] == *funname)
				funname[j - 1] = '\0';

			rl_macro_bind(seq, &funname[1], _rl_keymap);
		}
		else
			rl_set_key(seq, rl_named_function(funname), _rl_keymap);

		free(seq);
		return 0;
	}

	/* Get the actual character we want to deal with. */
	kname = strrchr(string, '-');
	if (!kname)
		kname = string;
	else
		kname++;

	key = glean_key_from_name(kname);

	/* Add in control and meta bits. */
	if (substring_member_of_array(string, possible_control_prefixes))
		key = CTRL(to_upper(key));

	if (substring_member_of_array(string, possible_meta_prefixes))
		key = META(key);

	/* Temporary.  Handle old-style keyname with macro-binding. */
	if (*funname == '\'' || *funname == '"') {
		char seq[2];
		int fl = strlen(funname);

		seq[0] = key;
		seq[1] = '\0';
		if (fl && funname[fl - 1] == *funname)
			funname[fl - 1] = '\0';

		rl_macro_bind(seq, &funname[1], _rl_keymap);
	}
#if defined (PREFIX_META_HACK)
	/* Ugly, but working hack to keep prefix-meta around. */
	else if (stricmp(funname, "prefix-meta") == 0) {
		char seq[2];

		seq[0] = key;
		seq[1] = '\0';
		rl_generic_bind(ISKMAP, seq, (char *) emacs_meta_keymap, _rl_keymap);
	}
#endif /* PREFIX_META_HACK */
	else
		rl_bind_key(key, rl_named_function(funname));
	return 0;
}

/* Simple structure for boolean readline variables (i.e., those that can
   have one of two values; either "On" or 1 for truth, or "Off" or 0 for
   false. */

static struct {
	char *name;
	int *value;
} boolean_varlist[] = {

	{
		"horizontal-scroll-mode", &_rl_horizontal_scroll_mode
	},
	{
		"mark-modified-lines", &_rl_mark_modified_lines
	},
	{
		"meta-flag", &_rl_meta_flag
	},
#if defined (PAREN_MATCHING)
	{
		"blink-matching-paren", &rl_blink_matching_paren
	},
#endif
	{
		"convert-meta", &_rl_convert_meta_chars_to_ascii
	},
	{
		"show-all-if-ambiguous", &_rl_complete_show_all
	},
	{
		"output-meta", &_rl_output_meta_chars
	},
#if defined (VISIBLE_STATS)
	{
		"visible-stats", &rl_visible_stats
	},
#endif /* VISIBLE_STATS */
	{
		"expand-tilde", &rl_complete_with_tilde_expansion
	},
	{
		(char *) NULL, (int *) NULL
	}
};

rl_variable_bind(name, value)
     char *name, *value;
{
	register int i;

	/* Check for simple variables first. */
	for (i = 0; boolean_varlist[i].name; i++) {
		if (stricmp(name, boolean_varlist[i].name) == 0) {
			/* A variable is TRUE if the "value" is "on", "1" or "". */
			if ((!*value) ||
			    (stricmp(value, "On") == 0) ||
			    (value[0] == '1' && value[1] == '\0'))
				*boolean_varlist[i].value = 1;
			else
				*boolean_varlist[i].value = 0;
			return 0;
		}
	}

	/* Not a boolean variable, so check for specials. */

	/* Editing mode change? */
	if (stricmp(name, "editing-mode") == 0) {
		if (strnicmp(value, "vi", 2) == 0) {
#if defined (VI_MODE)
			_rl_keymap = vi_insertion_keymap;
			rl_editing_mode = vi_mode;
#endif /* VI_MODE */
		}
		else if (strnicmp(value, "emacs", 5) == 0) {
			_rl_keymap = emacs_standard_keymap;
			rl_editing_mode = emacs_mode;
		}
	}

	/* Comment string change? */
	else if (stricmp(name, "comment-begin") == 0) {
#if defined (VI_MODE)
		if (*value) {
			if (rl_vi_comment_begin)
				free(rl_vi_comment_begin);

			rl_vi_comment_begin = savestring(value);
		}
#endif /* VI_MODE */
	}
	else if (stricmp(name, "completion-query-items") == 0) {
		int nval = 100;
		if (*value) {
			nval = atoi(value);
			if (nval < 0)
				nval = 0;
		}
		rl_completion_query_items = nval;
	}
	else if (stricmp(name, "keymap") == 0) {
		Keymap kmap;
		kmap = rl_get_keymap_by_name(value);
		if (kmap)
			rl_set_keymap(kmap);
	}
	else if (stricmp(name, "bell-style") == 0) {
		if (!*value)
			_rl_bell_preference = AUDIBLE_BELL;
		else {
			if (stricmp(value, "none") == 0 || stricmp(value, "off") == 0)
				_rl_bell_preference = NO_BELL;
			else if (stricmp(value, "audible") == 0 || stricmp(value, "on") == 0)
				_rl_bell_preference = AUDIBLE_BELL;
			else if (stricmp(value, "visible") == 0)
				_rl_bell_preference = VISIBLE_BELL;
		}
	}
	else if (stricmp(name, "prefer-visible-bell") == 0) {
		/* Backwards compatibility. */
		if (*value && (stricmp(value, "on") == 0 ||
			       (*value == '1' && !value[1])))
			_rl_bell_preference = VISIBLE_BELL;
		else
			_rl_bell_preference = AUDIBLE_BELL;
	}

	return 0;
}

/* Return the character which matches NAME.
   For example, `Space' returns ' '. */

typedef struct {
	char *name;
	int value;
} assoc_list;

static assoc_list name_key_alist[] =
{
	{"DEL", 0x7f},
	{"ESC", '\033'},
	{"Escape", '\033'},
	{"LFD", '\n'},
	{"Newline", '\n'},
	{"RET", '\r'},
	{"Return", '\r'},
	{"Rubout", 0x7f},
	{"SPC", ' '},
	{"Space", ' '},
	{"Tab", 0x09},
	{(char *) 0x0, 0}
};

static int glean_key_from_name(name)
     char *name;
{
	register int i;

	for (i = 0; name_key_alist[i].name; i++)
		if (stricmp(name, name_key_alist[i].name) == 0)
			return (name_key_alist[i].value);

	return (*(unsigned char *) name);	/* XXX was return (*name) */
}

/* Auxiliary functions to manage keymaps. */
static struct {
	char *name;
	Keymap map;
} keymap_names[] = {

	{
		"emacs", emacs_standard_keymap
	},
	{
		"emacs-standard", emacs_standard_keymap
	},
	{
		"emacs-meta", emacs_meta_keymap
	},
	{
		"emacs-ctlx", emacs_ctlx_keymap
	},
#if defined (VI_MODE)
	{
		"vi", vi_movement_keymap
	},
	{
		"vi-move", vi_movement_keymap
	},
	{
		"vi-command", vi_movement_keymap
	},
	{
		"vi-insert", vi_insertion_keymap
	},
#endif /* VI_MODE */
	{
		(char *) 0x0, (Keymap) 0x0
	}
};

Keymap
rl_get_keymap_by_name(name)
     char *name;
{
	register int i;

	for (i = 0; keymap_names[i].name; i++)
		if (strcmp(name, keymap_names[i].name) == 0)
			return (keymap_names[i].map);
	return ((Keymap) NULL);
}

void rl_set_keymap(map)
     Keymap map;
{
	if (map)
		_rl_keymap = map;
}

Keymap
rl_get_keymap()
{
	return (_rl_keymap);
}

void rl_set_keymap_from_edit_mode()
{
	if (rl_editing_mode == emacs_mode)
		_rl_keymap = emacs_standard_keymap;
#if defined (VI_MODE)
	else if (rl_editing_mode == vi_mode)
		_rl_keymap = vi_insertion_keymap;
#endif /* VI_MODE */
}

/* **************************************************************** */
/*                                                                  */
/*                Key Binding and Function Information              */
/*                                                                  */
/* **************************************************************** */

/* Each of the following functions produces information about the
   state of keybindings and functions known to Readline.  The info
   is always printed to rl_outstream, and in such a way that it can
   be read back in (i.e., passed to rl_parse_and_bind (). */

/* Print the names of functions known to Readline. */
void rl_list_funmap_names(count, ignore)
     int count, ignore;
{
	register int i;
	char **funmap_names;

	funmap_names = rl_funmap_names();

	if (!funmap_names)
		return;

	for (i = 0; funmap_names[i]; i++)
		fprintf(rl_outstream, "%s\n", funmap_names[i]);

	free(funmap_names);
}

/* Return a NULL terminated array of strings which represent the key
   sequences that are used to invoke FUNCTION in MAP. */
char **
  rl_invoking_keyseqs_in_map(function, map)
     Function *function;
     Keymap map;
{
	register int key;
	char **result;
	int result_index, result_size;

	result = (char **) NULL;
	result_index = result_size = 0;

	for (key = 0; key < 128; key++) {
		switch (map[key].type) {
		case ISMACR:
			/* Macros match, if, and only if, the pointers are identical.
			   Thus, they are treated exactly like functions in here. */
		case ISFUNC:
			/* If the function in the keymap is the one we are looking for,
			   then add the current KEY to the list of invoking keys. */
			if (map[key].function == function) {
				char *keyname = (char *) xmalloc(5);

				if (CTRL_CHAR(key))
					sprintf(keyname, "\\C-%c", to_lower(UNCTRL(key)));
				else if (key == RUBOUT)
					sprintf(keyname, "\\C-?");
				else if (key == '\\' || key == '"') {
					keyname[0] = '\\';
					keyname[1] = (char) key;
					keyname[2] = '\0';
				}
				else {
					keyname[0] = (char) key;
					keyname[1] = '\0';
				}

				if (result_index + 2 > result_size)
					result = (char **) xrealloc
						(result, (result_size += 10) * sizeof(char *));

				result[result_index++] = keyname;
				result[result_index] = (char *) NULL;
			}
			break;

		case ISKMAP:
			{
				char **seqs = (char **) NULL;

				/* Find the list of keyseqs in this map which have FUNCTION as
				   their target.  Add the key sequences found to RESULT. */
				if (map[key].function)
					seqs =
						rl_invoking_keyseqs_in_map(function, FUNCTION_TO_KEYMAP(map, key));

				if (seqs) {
					register int i;

					for (i = 0; seqs[i]; i++) {
						char *keyname = (char *) xmalloc(6 + strlen(seqs[i]));

						if (key == ESC)
							sprintf(keyname, "\\e");
						else if (CTRL_CHAR(key))
							sprintf(keyname, "\\C-%c", to_lower(UNCTRL(key)));
						else if (key == RUBOUT)
							sprintf(keyname, "\\C-?");
						else if (key == '\\' || key == '"') {
							keyname[0] = '\\';
							keyname[1] = (char) key;
							keyname[2] = '\0';
						}
						else {
							keyname[0] = (char) key;
							keyname[1] = '\0';
						}

						strcat(keyname, seqs[i]);
						free(seqs[i]);

						if (result_index + 2 > result_size)
							result = (char **) xrealloc
								(result, (result_size += 10) * sizeof(char *));

						result[result_index++] = keyname;
						result[result_index] = (char *) NULL;
					}

					free(seqs);
				}
			}
			break;
		}
	}
	return (result);
}

/* Return a NULL terminated array of strings which represent the key
   sequences that can be used to invoke FUNCTION using the current keymap. */
char **
  rl_invoking_keyseqs(function)
     Function *function;
{
	return (rl_invoking_keyseqs_in_map(function, _rl_keymap));
}

/* Print all of the current functions and their bindings to
   rl_outstream.  If an explicit argument is given, then print
   the output in such a way that it can be read back in. */
int rl_dump_functions(count, key)
     int count, key;
{
	rl_function_dumper(rl_explicit_arg);
	rl_on_new_line();
	return (0);
}

/* Print all of the functions and their bindings to rl_outstream.  If
   PRINT_READABLY is non-zero, then print the output in such a way
   that it can be read back in. */
void rl_function_dumper(print_readably)
     int print_readably;
{
	register int i;
	char **names;
	char *name;

	names = rl_funmap_names();

	fprintf(rl_outstream, "\n");

	for (i = 0; name = names[i]; i++) {
		Function *function;
		char **invokers;

		function = rl_named_function(name);
		invokers = rl_invoking_keyseqs_in_map(function, _rl_keymap);

		if (print_readably) {
			if (!invokers)
				fprintf(rl_outstream, "# %s (not bound)\n", name);
			else {
				register int j;

				for (j = 0; invokers[j]; j++) {
					fprintf(rl_outstream, "\"%s\": %s\n",
						invokers[j], name);
					free(invokers[j]);
				}

				free(invokers);
			}
		}
		else {
			if (!invokers)
				fprintf(rl_outstream, "%s is not bound to any keys\n",
					name);
			else {
				register int j;

				fprintf(rl_outstream, "%s can be found on ", name);

				for (j = 0; invokers[j] && j < 5; j++) {
					fprintf(rl_outstream, "\"%s\"%s", invokers[j],
					    invokers[j + 1] ? ", " : ".\n");
				}

				if (j == 5 && invokers[j])
					fprintf(rl_outstream, "...\n");

				for (j = 0; invokers[j]; j++)
					free(invokers[j]);

				free(invokers);
			}
		}
	}
}

/* Bind key sequence KEYSEQ to DEFAULT_FUNC if KEYSEQ is unbound. */
void _rl_bind_if_unbound(keyseq, default_func)
     char *keyseq;
     Function *default_func;
{
	Function *func;

	if (keyseq) {
		func = rl_function_of_keyseq(keyseq, _rl_keymap, (int *) NULL);
		if (!func || func == rl_do_lowercase_version)
			rl_set_key(keyseq, default_func, _rl_keymap);
	}
}

/* **************************************************************** */
/*                                                                  */
/*                      String Utility Functions                    */
/*                                                                  */
/* **************************************************************** */

static char *strindex();

/* Return non-zero if any members of ARRAY are a substring in STRING. */
static int substring_member_of_array(string, array)
     char *string, **array;
{
	while (*array) {
		if (strindex(string, *array))
			return (1);
		array++;
	}
	return (0);
}

#if !defined (HAVE_STRCASECMP)
/* Whoops, Unix doesn't have strnicmp. */

/* Compare at most COUNT characters from string1 to string2.  Case
   doesn't matter. */
static int strnicmp(string1, string2, count)
     char *string1, *string2;
     int count;
{
	register char ch1, ch2;

	while (count) {
		ch1 = *string1++;
		ch2 = *string2++;
		if (to_upper(ch1) == to_upper(ch2))
			count--;
		else
			break;
	}
	return (count);
}

/* strcmp (), but caseless. */
static int stricmp(string1, string2)
     char *string1, *string2;
{
	register char ch1, ch2;

	while (*string1 && *string2) {
		ch1 = *string1++;
		ch2 = *string2++;
		if (to_upper(ch1) != to_upper(ch2))
			return (1);
	}
	return (*string1 - *string2);
}
#endif /* !HAVE_STRCASECMP */

/* Determine if s2 occurs in s1.  If so, return a pointer to the
   match in s1.  The compare is case insensitive. */
static char *
  strindex(s1, s2)
     register char *s1, *s2;
{
	register int i, l = strlen(s2);
	register int len = strlen(s1);

	for (i = 0; (len - i) >= l; i++)
		if (strnicmp(s1 + i, s2, l) == 0)
			return (s1 + i);
	return ((char *) NULL);
}