/*-
* Copyright 2005 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include <endian.h>
#include "sha256.h"
#if __FreeBSD_version < 500111
static __inline int be32dec( const void *pp )
{
unsigned char const *p = ( unsigned char const * )pp;
return ( ( p[0] << 24 ) | ( p[1] << 16 ) | ( p[2] << 8 ) | p[3] );
}
static __inline void be32enc( void *pp, int u )
{
unsigned char *p = ( unsigned char * )pp;
p[0] = ( u >> 24 ) & 0xff;
p[1] = ( u >> 16 ) & 0xff;
p[2] = ( u >> 8 ) & 0xff;
p[3] = u & 0xff;
}
#endif
#if BYTE_ORDER == BIG_ENDIAN
/* Copy a vector of big-endian int into a vector of bytes */
#define be32enc_vect(dst, src, len) \
memcpy((void *)dst, (const void *)src, (size_t)len)
/* Copy a vector of bytes into a vector of big-endian int */
#define be32dec_vect(dst, src, len) \
memcpy((void *)dst, (const void *)src, (size_t)len)
#else /* BYTE_ORDER != BIG_ENDIAN */
/*
* Encode a length len/4 vector of (int) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static void be32enc_vect( unsigned char *dst, const int *src, size_t len )
{
size_t i;
for( i = 0; i < len / 4; i++ )
be32enc( dst + i * 4, src[i] );
}
/*
* Decode a big-endian length len vector of (unsigned char) into a length
* len/4 vector of (int). Assumes len is a multiple of 4.
*/
static void be32dec_vect( int *dst, const unsigned char *src, size_t len )
{
size_t i;
for( i = 0; i < len / 4; i++ )
dst[i] = be32dec( src + i * 4 );
}
#endif /* BYTE_ORDER != BIG_ENDIAN */
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void SHA256_Transform( int *state, const unsigned char block[64] )
{
int W[64];
int S[8];
int t0, t1;
int i;
/*
* 1. Prepare message schedule W.
*/
be32dec_vect( W, block, 64 );
for( i = 16; i < 64; i++ )
W[i] = s1( W[i - 2] ) + W[i - 7] + s0( W[i - 15] ) + W[i - 16];
/*
* 2. Initialize working variables.
*/
memcpy( S, state, 32 );
/*
* 3. Mix.
*/
RNDr( S, W, 0, 0x428a2f98 );
RNDr( S, W, 1, 0x71374491 );
RNDr( S, W, 2, 0xb5c0fbcf );
RNDr( S, W, 3, 0xe9b5dba5 );
RNDr( S, W, 4, 0x3956c25b );
RNDr( S, W, 5, 0x59f111f1 );
RNDr( S, W, 6, 0x923f82a4 );
RNDr( S, W, 7, 0xab1c5ed5 );
RNDr( S, W, 8, 0xd807aa98 );
RNDr( S, W, 9, 0x12835b01 );
RNDr( S, W, 10, 0x243185be );
RNDr( S, W, 11, 0x550c7dc3 );
RNDr( S, W, 12, 0x72be5d74 );
RNDr( S, W, 13, 0x80deb1fe );
RNDr( S, W, 14, 0x9bdc06a7 );
RNDr( S, W, 15, 0xc19bf174 );
RNDr( S, W, 16, 0xe49b69c1 );
RNDr( S, W, 17, 0xefbe4786 );
RNDr( S, W, 18, 0x0fc19dc6 );
RNDr( S, W, 19, 0x240ca1cc );
RNDr( S, W, 20, 0x2de92c6f );
RNDr( S, W, 21, 0x4a7484aa );
RNDr( S, W, 22, 0x5cb0a9dc );
RNDr( S, W, 23, 0x76f988da );
RNDr( S, W, 24, 0x983e5152 );
RNDr( S, W, 25, 0xa831c66d );
RNDr( S, W, 26, 0xb00327c8 );
RNDr( S, W, 27, 0xbf597fc7 );
RNDr( S, W, 28, 0xc6e00bf3 );
RNDr( S, W, 29, 0xd5a79147 );
RNDr( S, W, 30, 0x06ca6351 );
RNDr( S, W, 31, 0x14292967 );
RNDr( S, W, 32, 0x27b70a85 );
RNDr( S, W, 33, 0x2e1b2138 );
RNDr( S, W, 34, 0x4d2c6dfc );
RNDr( S, W, 35, 0x53380d13 );
RNDr( S, W, 36, 0x650a7354 );
RNDr( S, W, 37, 0x766a0abb );
RNDr( S, W, 38, 0x81c2c92e );
RNDr( S, W, 39, 0x92722c85 );
RNDr( S, W, 40, 0xa2bfe8a1 );
RNDr( S, W, 41, 0xa81a664b );
RNDr( S, W, 42, 0xc24b8b70 );
RNDr( S, W, 43, 0xc76c51a3 );
RNDr( S, W, 44, 0xd192e819 );
RNDr( S, W, 45, 0xd6990624 );
RNDr( S, W, 46, 0xf40e3585 );
RNDr( S, W, 47, 0x106aa070 );
RNDr( S, W, 48, 0x19a4c116 );
RNDr( S, W, 49, 0x1e376c08 );
RNDr( S, W, 50, 0x2748774c );
RNDr( S, W, 51, 0x34b0bcb5 );
RNDr( S, W, 52, 0x391c0cb3 );
RNDr( S, W, 53, 0x4ed8aa4a );
RNDr( S, W, 54, 0x5b9cca4f );
RNDr( S, W, 55, 0x682e6ff3 );
RNDr( S, W, 56, 0x748f82ee );
RNDr( S, W, 57, 0x78a5636f );
RNDr( S, W, 58, 0x84c87814 );
RNDr( S, W, 59, 0x8cc70208 );
RNDr( S, W, 60, 0x90befffa );
RNDr( S, W, 61, 0xa4506ceb );
RNDr( S, W, 62, 0xbef9a3f7 );
RNDr( S, W, 63, 0xc67178f2 );
/*
* 4. Mix local working variables into global state
*/
for( i = 0; i < 8; i++ )
state[i] += S[i];
}
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* Add padding and terminating bit-count. */
static void SHA256_Pad( SHA256_CTX * ctx )
{
unsigned char len[8];
int r, plen;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be32enc_vect( len, ctx->count, 8 );
/*
* Add 1--64 bytes so that the resulting length is 56 mod 64
*/
r = ( ctx->count[1] >> 3 ) & 0x3f;
plen = ( r < 56 ) ? ( 56 - r ) : ( 120 - r );
SHA256_Update( ctx, PAD, ( size_t ) plen );
/*
* Add the terminating bit-count
*/
SHA256_Update( ctx, len, 8 );
}
/* SHA-256 initialization. Begins a SHA-256 operation. */
void SHA256_Init( SHA256_CTX * ctx )
{
/*
* Zero bits processed so far
*/
ctx->count[0] = ctx->count[1] = 0;
/*
* Magic initialization constants
*/
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
/* Add bytes into the hash */
void SHA256_Update( SHA256_CTX * ctx, const unsigned char *src, size_t len )
{
int bitlen[2];
size_t r;
/*
* Number of bytes left in the buffer from previous updates
*/
r = ( ctx->count[1] >> 3 ) & 0x3f;
/*
* Convert the length into a number of bits
*/
bitlen[1] = ( ( int )len ) << 3;
bitlen[0] = ( int )( len >> 29 );
/*
* Update number of bits
*/
if( ( ctx->count[1] += bitlen[1] ) < bitlen[1] )
ctx->count[0]++;
ctx->count[0] += bitlen[0];
/*
* Handle the case where we don't need to perform any transforms
*/
if( len < 64 - r )
{
memcpy( &ctx->buf[r], src, len );
return;
}
/*
* Finish the current block
*/
memcpy( &ctx->buf[r], src, 64 - r );
SHA256_Transform( ctx->state, ctx->buf );
src += 64 - r;
len -= 64 - r;
/*
* Perform complete blocks
*/
while( len >= 64 )
{
SHA256_Transform( ctx->state, src );
src += 64;
len -= 64;
}
/*
* Copy left over data into buffer
*/
memcpy( ctx->buf, src, len );
}
/*
* SHA-256 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
void SHA256_Final( unsigned char digest[32], SHA256_CTX * ctx )
{
/*
* Add padding
*/
SHA256_Pad( ctx );
/*
* Write the hash
*/
be32enc_vect( digest, ctx->state, 32 );
/*
* Clear the context state
*/
memset( ( void * )ctx, 0, sizeof( *ctx ) );
}
char *sha256_crypt( const char *pwd )
{
SHA256_CTX context;
static char output[65];
unsigned char sha256sum[32];
unsigned int j;
SHA256_Init( &context );
SHA256_Update( &context, ( const unsigned char * )pwd, strlen( pwd ) );
SHA256_Final( sha256sum, &context );
for( j = 0; j < 32; ++j )
{
snprintf( output + j * 2, 65, "%02x", sha256sum[j] );
}
return output;
}