ldmud-3.2.9/doc/
ldmud-3.2.9/doc/efun/
ldmud-3.2.9/mud/
ldmud-3.2.9/mud/heaven7/
ldmud-3.2.9/mud/heaven7/lib/
ldmud-3.2.9/mud/lp-245/
ldmud-3.2.9/mud/lp-245/banish/
ldmud-3.2.9/mud/lp-245/doc/
ldmud-3.2.9/mud/lp-245/doc/examples/
ldmud-3.2.9/mud/lp-245/doc/sefun/
ldmud-3.2.9/mud/lp-245/log/
ldmud-3.2.9/mud/lp-245/obj/Go/
ldmud-3.2.9/mud/lp-245/players/lars/
ldmud-3.2.9/mud/lp-245/room/death/
ldmud-3.2.9/mud/lp-245/room/maze1/
ldmud-3.2.9/mud/lp-245/room/sub/
ldmud-3.2.9/mud/lp-245/secure/
ldmud-3.2.9/mud/morgengrauen/
ldmud-3.2.9/mud/morgengrauen/lib/
ldmud-3.2.9/mud/sticklib/
ldmud-3.2.9/mud/sticklib/src/
ldmud-3.2.9/mudlib/uni-crasher/
ldmud-3.2.9/pkg/
ldmud-3.2.9/pkg/debugger/
ldmud-3.2.9/pkg/diff/
ldmud-3.2.9/pkg/misc/
ldmud-3.2.9/src/autoconf/
ldmud-3.2.9/src/bugs/
ldmud-3.2.9/src/bugs/MudCompress/
ldmud-3.2.9/src/bugs/b-020916-files/
ldmud-3.2.9/src/bugs/doomdark/
ldmud-3.2.9/src/bugs/ferrycode/ferry/
ldmud-3.2.9/src/bugs/ferrycode/obj/
ldmud-3.2.9/src/bugs/psql/
ldmud-3.2.9/src/done/
ldmud-3.2.9/src/done/order_alist/
ldmud-3.2.9/src/done/order_alist/obj/
ldmud-3.2.9/src/done/order_alist/room/
ldmud-3.2.9/src/gcc/
ldmud-3.2.9/src/gcc/2.7.0/
ldmud-3.2.9/src/gcc/2.7.1/
ldmud-3.2.9/src/hosts/
ldmud-3.2.9/src/hosts/GnuWin32/
ldmud-3.2.9/src/hosts/amiga/NetIncl/
ldmud-3.2.9/src/hosts/amiga/NetIncl/netinet/
ldmud-3.2.9/src/hosts/amiga/NetIncl/sys/
ldmud-3.2.9/src/hosts/i386/
ldmud-3.2.9/src/hosts/msdos/byacc/
ldmud-3.2.9/src/hosts/msdos/doc/
ldmud-3.2.9/src/hosts/os2/
ldmud-3.2.9/src/hosts/win32/
ldmud-3.2.9/src/util/
ldmud-3.2.9/src/util/erq/
ldmud-3.2.9/src/util/indent/hosts/next/
ldmud-3.2.9/src/util/xerq/
ldmud-3.2.9/src/util/xerq/lpc/
ldmud-3.2.9/src/util/xerq/lpc/www/
/*---------------------------------------------------------------------------
 * Gamedriver: Random Generator
 *
 * Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura.
 *    When you use this, send an e-mail to <matumoto@math.keio.ac.jp> with
 *     an appropriate reference to your work.
 *
 * High-speed implementation by Shawn J. Cokus who appreciates a copy
 *    of the above mail (<Cokus@math.washington.edu>).
 *
 * This library is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Library General Public License as published by
 * the Free Software Foundation (either version 2 of the License or, at your
 * option, any later version).  This library is distributed in the hope that
 * it will be useful, but WITHOUT ANY WARRANTY, without even the implied
 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
 * the GNU Library General Public License for more details.  You should have
 * received a copy of the GNU Library General Public License along with this
 * library; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place, Suite 330, Boston, MA 02111-1307, USA.
 *---------------------------------------------------------------------------
 * This is the ``Mersenne Twister'' random number generator MT19937, which
 * generates pseudorandom integers uniformly distributed in 0..(2^32 - 1)
 * starting from any odd seed in 0..(2^32 - 1).  This version is a recode
 * by Shawn Cokus (Cokus@math.washington.edu) on March 8, 1998 of a version by
 * Takuji Nishimura (who had suggestions from Topher Cooper and Marc Rieffel in
 * July-August 1997).
 *
 * Effectiveness of the recoding (on Goedel2.math.washington.edu, a DEC Alpha
 * running OSF/1) using GCC -O3 as a compiler: before recoding: 51.6 sec. to
 * generate 300 million random numbers; after recoding: 24.0 sec. for the same
 * (i.e., 46.5% of original time), so speed is now about 12.5 million random
 * number generations per second on this machine.
 *
 * According to the URL <http: *www.math.keio.ac.jp/~matumoto/emt.html>
 * (and paraphrasing a bit in places), the Mersenne Twister is ``designed
 * with consideration of the flaws of various existing generators,'' has
 * a period of 2^19937 - 1, gives a sequence that is 623-dimensionally
 * equidistributed, and ``has passed many stringent tests, including the
 * die-hard test of G. Marsaglia and the load test of P. Hellekalek and
 * S. Wegenkittl.''  It is efficient in memory usage (typically using 2506
 * to 5012 bytes of static data, depending on data type sizes, and the code
 * is quite short as well).  It generates random numbers in batches of 624
 * at a time, so the caching and pipelining of modern systems is exploited.
 * It is also divide- and mod-free.
 *---------------------------------------------------------------------------
 */

#include "driver.h"

#include "random.h"

/* uint32 must be an unsigned integer type capable of holding at least 32
 * bits; exactly 32 should be fastest, but 64 is better on an Alpha with
 * GCC at -O3 optimization so try your options and see what's best for you
 */

/*-------------------------------------------------------------------------*/

#define N              (624)                 /* length of state vector */
#define M              (397)                 /* a period parameter */
#define K              (0x9908B0DFU)         /* a magic constant */
#define hiBit(u)       ((u) & 0x80000000U)   /* mask all but highest   bit of u */
#define loBit(u)       ((u) & 0x00000001U)   /* mask all but lowest    bit of u */
#define loBits(u)      ((u) & 0x7FFFFFFFU)   /* mask     the highest   bit of u */
#define mixBits(u, v)  (hiBit(u)|loBits(v))  /* move hi bit of u to hi bit of v */

static uint32   state[N+1];      /* state vector + 1 extra to not violate ANSI C */
static uint32   *next;           /* next random value is computed from here */
static int      left = -1;       /* can *next++ this many times before reloading */


/*-------------------------------------------------------------------------*/
void
seed_random (uint32 seed)

/* We initialize state[0..(N-1)] via the generator
 *
 *   x_new = (69069 * x_old) mod 2^32
 *
 * from Line 15 of Table 1, p. 106, Sec. 3.3.4 of Knuth's
 * _The Art of Computer Programming_, Volume 2, 3rd ed.
 *
 * Notes (SJC): I do not know what the initial state requirements
 * of the Mersenne Twister are, but it seems this seeding generator
 * could be better.  It achieves the maximum period for its modulus
 * (2^30) iff x_initial is odd (p. 20-21, Sec. 3.2.1.2, Knuth); if
 * x_initial can be even, you have sequences like 0, 0, 0, ...;
 * 2^31, 2^31, 2^31, ...; 2^30, 2^30, 2^30, ...; 2^29, 2^29 + 2^31,
 * 2^29, 2^29 + 2^31, ..., etc. so I force seed to be odd below.
 *
 * Even if x_initial is odd, if x_initial is 1 mod 4 then
 *
 *   the          lowest bit of x is always 1,
 *   the  next-to-lowest bit of x is always 0,
 *   the 2nd-from-lowest bit of x alternates      ... 0 1 0 1 0 1 0 1 ... ,
 *   the 3rd-from-lowest bit of x 4-cycles        ... 0 1 1 0 0 1 1 0 ... ,
 *   the 4th-from-lowest bit of x has the 8-cycle ... 0 0 0 1 1 1 1 0 ... ,
 *    ...
 *
 * and if x_initial is 3 mod 4 then
 *
 *   the          lowest bit of x is always 1,
 *   the  next-to-lowest bit of x is always 1,
 *   the 2nd-from-lowest bit of x alternates      ... 0 1 0 1 0 1 0 1 ... ,
 *   the 3rd-from-lowest bit of x 4-cycles        ... 0 0 1 1 0 0 1 1 ... ,
 *   the 4th-from-lowest bit of x has the 8-cycle ... 0 0 1 1 1 1 0 0 ... ,
 *    ...
 *
 * The generator's potency (min. s>=0 with (69069-1)^s = 0 mod 2^32) is
 * 16, which seems to be alright by p. 25, Sec. 3.2.1.3 of Knuth.  It
 * also does well in the dimension 2..5 spectral tests, but it could be
 * better in dimension 6 (Line 15, Table 1, p. 106, Sec. 3.3.4, Knuth).
 *
 * Note that the random number user does not see the values generated
 * here directly since reloadMT() will always munge them first, so maybe
 * none of all of this matters.  In fact, the seed values made here could
 * even be extra-special desirable if the Mersenne Twister theory says
 * so-- that's why the only change I made is to restrict to odd seeds.
 */

{

    register uint32 x = (seed | 1U) & 0xFFFFFFFFU, *s = state;
    register int    j;

    for(left=0, *s++=x, j=N; --j; *s++ = (x*=69069U) & 0xFFFFFFFFU) NOOP;
}

/*-------------------------------------------------------------------------*/
static
mp_uint reloadMT (void)

{
    register uint32 *p0=state, *p2=state+2, *pM=state+M, s0, s1;
    register int    j;

    if(left < -1)
        seed_random(4357U);

    left=N-1, next=state+1;

    for(s0=state[0], s1=state[1], j=N-M+1; --j; s0=s1, s1=*p2++)
        *p0++ = *pM++ ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);

    for(pM=state, j=M; --j; s0=s1, s1=*p2++)
        *p0++ = *pM++ ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);

    s1=state[0], *p0 = *pM ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
    s1 ^= (s1 >> 11);
    s1 ^= (s1 <<  7) & 0x9D2C5680U;
    s1 ^= (s1 << 15) & 0xEFC60000U;
    return(s1 ^ (s1 >> 18));
}


/*-------------------------------------------------------------------------*/
uint32
random_number (uint32 n)

/* Return a random number in the range 0..n-1.
 *
 * The key return an evenly distributed random number in
 * the given range is not to use the low bits of the raw random
 * number, as these are distressingly non-random.
 * The C-FAQ 13.16 gives a solution ('rc / (RANDOM_MAX / n + 1)'), which
 * unfortunately doesn't work too well for large ranges.
 */

{
#define RANDOM_MAX 0xFFFFFFFFU

    uint32 y, rc;
#if !defined(HAVE_LONG_LONG) || SIZEOF_CHAR_P != 4
    uint32 rmax;

    rmax = (RANDOM_MAX / (n+1)) * n;
      /* rmax = 0 if n >= RANDOM_MAX */

    do {
#endif

    if(--left < 0)
        rc = reloadMT();
    else
    {
        y  = *next++;
        y ^= (y >> 11);
        y ^= (y <<  7) & 0x9D2C5680U;
        y ^= (y << 15) & 0xEFC60000U;
        rc = (y ^ (y >> 18));
    }

#if defined(HAVE_LONG_LONG) && SIZEOF_CHAR_P == 4
    return (uint32)
           ((unsigned long long)rc * (unsigned long long)n
                                    >> sizeof(uint32) * CHAR_BIT);
#else
    } while (rmax && rc > rmax);

    if (!rmax)
        return rc;
    if (rmax / n < rc && rmax / n > 0)
        return rc / (rmax / n);
    return (rc * n) / rmax;
#endif
}

/***************************************************************************/